FINAL ANNUAL MONITORING REPORT YEAR 5 (2014) MCINTYRE CREEK RESTORATION SITE AT HORNETS NEST PARK MECKLENBURG COUNTY, NORTH CAROLINA (EEP Project No. 243, Contract No. 004499)

Submitted to: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

December 2014

FINAL ANNUAL MONITORING REPORT YEAR 5 (2014) MCINTYRE CREEK RESTORATION SITE AT HORNETS NEST PARK MECKLENBURG COUNTY, NORTH CAROLINA (EEP Project No. 243, Contract No. 004499)

Submitted to: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

> Prepared by: Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603

Design Firm: KCI Associates of North Carolina, P.A. Landmark Center I, Suite 200 4601 Six Forks Road Raleigh, North Carolina 27609

December 2014

Table of Contents

1.0 EXECUTIVE SUMMARY	1
2.0 METHODOLOGY	3
2.1 Vegetation Assessment	3
2.2 Stream Assessment	3
2.3 Wetland Assessment	4
3.0 REFERENCES	4

Appendices

APPENDIX A. PROJECT VICINITY MAP AND BACKGROUND TABLES
Figure 1. Vicinity Map
Table 1. Project Components and Mitigation Credits
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Baseline Information and Attributes
APPENDIX B. VISUAL ASSESSMENT DATA
Figures 2 and 2A-2B. Current Conditions Plan View
Tables 5A-5C. Visual Stream Morphology Stability Assessment Tables
Stream Fixed Station Dector
Stream Fixed-Station Photos
APPENDIX C VEGETATION PLOT DATA
Table 7 Vegetation Plot Criteria Attainment
Table 8 CVS Vegetation Plot Metadata
Table 9A, 2014 (Year 5) Total and Planted Stems by Plot and Species
Table 9B. Annual Totals and Planted Stems by Species
APPENDIX D. STREAM SURVEY DATA
Cross-section Plots
Longitudinal Profile Plots
Substrate Plots
Table 10a. Baseline Stream Data Summary
Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment
Parameter Distributions)
Table 11a. Monitoring Data – Dimensional Morphology Summary (Dimensional Parameters –
Cross Sections)
Table 11b. Monitoring Data – Stream Reach Data Summary
APPENDIX E. HYDROLOGY DATA
Table 12. Verification of Bankfull Events
2014 (Year 5) Groundwater Gauge Graphs
Figure 3. Annual Climatic Data vs. 30-year Historic Data
Table 13. Wetland Hydrology Criteria Attainment Summary
APPENDIX F. ADDITIONAL SITE DATA
Restoration Plan Figure 3. USGS Topographic Map (with drainage area)
Restoration Plan Figure 4. Existing Conditions (with soils)
Preconstruction Photographs
ΑΓΓΕΝΙΣΙΑ ΥΓΕΜΑΤΕΚΝΠΕΙΣΕΓΑΝΝΙΝΥ ΝΟΙΨΙΑΚΥ

Appendices (continued)

APPENDIX H. LAND OWNERSHIP AND PROTECTION APPENDIX I. JURISDICTIONAL DETERMINATIONS 404/401 PERMITS AND RELATED CORRESPONDENCE APPENDIX J. PROJECT DEBIT LEDGER

1.0 EXECUTIVE SUMMARY

The North Carolina Ecosystem Enhancement Program (NCEEP) has completed restoration of 5178 linear feet of stream at the McIntyre Creek Restoration Site (hereafter referred to as the "Site") to assist in fulfilling stream and wetland mitigation goals in the area. This report (compiled based on EEP's *Procedural Guidance and Content Requirements for EEP Monitoring Reports* Version 1.4 dated 11/7/11) summarizes data for year 5 (2014) monitoring.

The goals and objectives of this project focus on improving local water quality, habitat, and stream stability. These goals were accomplished by the following.

- 1. Restoring stable channel morphology capable of moving flows and sediments provided by the watershed.
- 2. Improving water quality by reducing soil and riparian vegetation loss resulting from lateral erosion and bed degradation.
- 3. Improving aquatic habitat with bed variability and the use of in-stream structures.
- 4. Stabilizing tributaries draining into McIntyre Creek.
- 5. Providing educational opportunities through Mecklenburg County.
- 6. Improving the natural aesthetics of Hornets Nest Park.
- 7. Enhancing vegetation to provide habitat/food sources, shade the stream, filter overland runoff, and remove soil particles and other nutrients from stormwater.
- 8. Protecting a Site identified in a watershed listed as impaired for elevated levels of copper and turbidity (NCDWQ 2010).

The Site is located in Hornets Nest Park on the northern side of the City of Charlotte in Mecklenburg County. The Site is located in United States Geological Survey (USGS) Hydrologic Unit 03050101170020 (North Carolina Division of Water Quality [NCDWQ] Subbasin 03-08-34) of the Catawba River Basin and will service USGS 8-digit Cataloging Unit (CU) 03050101. The Site is located in NCEEP Targeted Local Watershed within the Long Creek watershed targeted for restoration. Waters in the Site drain approximately 2.5 miles into Long Creek (NCDWQ No. 11-120-[2.5]), which is listed as impaired for elevated levels of copper and turbidity negatively affecting aquatic life (NCDWQ 2010).

Prior to construction, the Site contained a degraded stream channel with a disturbed riparian buffer located within Hornets Nest Park. Site streams were characterized by eroding banks, channel widening, high sediment inputs from construction occurring in the upstream watershed and onsite bank erosion, and channel incision as indicated by bank-height-ratios ranging from 1.4 to 1.9. Surrounding land uses include commercial and residential areas with narrow riparian corridors adjacent to streams. At least 50 percent of the contributing watershed had been cleared and developed.

Project construction was completed between March 2007-May 2008 and remediation construction to repair structures, stabilize banks, provide grade control, and dissipate stormwater energy was completed between August 2009-January 2010. The project restored 5178 linear feet of stream using Priority I restoration by constructing a new meandering channel within the McIntyre Creek floodplain, incorporating in-stream structures, installing grade control structures at the confluence with two tributaries, and planting native forest species. Site activities provide 5129 Stream Mitigation Units (49 linear feet of the restored channel is located within a utility easement and therefore was not included in the available mitigation credit). The Site is protected by a permanent conservation easement held by the State of North Carolina.

Success criteria for stream restoration will be assessed using measurements of stream dimension, pattern, and profile; site photographs; visual assessments; and vegetation sampling. Cross-section measurements should show little or no change from the as-built cross-sections. If changes occur, evaluations will be completed to determine whether changes are minor adjustments trending towards a more stable channel or if changes indicate movement towards an unstable condition. Annual measurements should indicate stable bed form features with little change from the as-built survey. Pools are expected to maintain depth with lower water surface slope and riffles are expected to remain shallower with steeper water surface slopes. Substrate measurements should indicate maintenance of distributions from the design phase and baseline measurements. In addition, there should be an absence of any significant aggradation or degradation of the stream channel.

There are areas of bank erosion located throughout the site, with those at the bottom of the project (Monitoring reach 1) being the most concerning in that they represent active mass wasting. As a result, EEP is engaging in a repair of these areas in monitoring reach 1 early in 2015. The areas in reach 2 and 3 are less concerning in that they are dominated by surficial scour as opposed to mass wasting. Additionally, these features developed earlier in the project, but have not advanced in recent years. The bank erosion percentages within these reaches have either remained the same or improved slightly compared to prior years, but will continue to be monitored. Erosion was also observed in pool cross sections 1 and 4 earlier in the projects history, but these cross section have not demonstrated any appreciable change even when exposed to multiple storm flows. The watershed is extremely flashy due to the extensive amount of impervious surface in the contributing watershed and floods quickly even during modest rain events. Therefore, as per EEP, these areas will continue to be monitored, but given the lack of change within the last 3 years, the repair will focus on the bottom reach (Monitoring reach 1) thereby avoiding unnecessary disturbance of sections that appear to have equilibrated.

Success criteria for stream restoration will include documentation of two bankfull channel events during the monitoring period. In the event that less than two bankfull events occur during the first five years, monitoring will continue until the second event is documented. In addition, bankfull events must occur during separate monitoring years. A crest gauge is located within the Site to assist with documentation of bankfull events (Figures 2-2A, Appendix B). Two bankfull events were documented during the year 5 (2014) monitoring season for a total of five documented bankfull events within the five-year monitoring period. Additionally, precipitation data indicates that one geomorphologically relevant flow event occurred onsite during the year five (2014) monitoring season for a total of at least nine such flows occurring over the five year monitoring period.

Vegetation success criteria dictate that an average density of 320 stems per acre must be surviving in the first three monitoring years. Subsequently, 290 stems per acre must be surviving in year 4 and 260 stems per acre in year 5. Stem counts will be based on an average of the evaluated vegetation plots. Based on the number of stems counted, average densities were measured at 477 planted stems per acre (excluding livestakes) surviving in year 5 (2014). The dominant species identified at the Site were planted stems of river birch (*Betula nigra*), green ash (*Fraxinus pennsylvanica*), cherrybark oak (*Quercus pagoda*), and silky dogwood (*Cornus amomum*). The vegetation plots also included between 6 and 12 native woody species with 25 observed in the plot data site wide. Nine of the ten individual plots met success criteria based on planted stems alone. Plot 4 was below success criteria based on planted stems alone; however, when including naturally recruited stems of appropriate species such as green ash (*Fraxinus pennsylvanica*) and box elder (*Acer negundo*) plot 4 is well-above 260 stems per acre. Planted stems and natural recruits are growing well throughout the Site; in general vegetation is vigorous.

Vegetation areas of concern within the Site include several small patches of multiflora rose (*Rosa multiflora*), Chinese privet (*Ligustrum sinense*), and Japanese honeysuckle (*Lonicera japonica*).

Additionally, several large patches of Kudzu (*Pueraria lobata*) were observed within the Site (depicted on Figures 2A-2B, Appendix B). A treatment of all invasive species occurred in late October 2013 and again in early 2014; these treatments initially appeared to be successful, however, several areas of kudzu have spread during the 2014 growing season resulting in some tree mortality. EEP will continue to treat invasive species within the Site as needed.

Two groundwater gauges (Gauges 2 and 3) were installed within the Site within wetland areas created as the result of stream restoration activities. An additional gauge (Gauge 1) was placed just outside of delineated wetland areas created as the result of stream restoration activities. Success criteria for wetland groundwater hydrology at the Site requires inundation or saturation within 12 inches of the ground surface for a consecutive period of 10 percent of the growing season or greater than 23 consecutive days (the growing season in Mecklenburg County begins March 22 and ends November 11 [233 days]). Gauges 2 and 3 exceeded success criteria for year 5 (2014) and Gauge 1 was just short of success being inundated for 16 days or 6.8 percent of the growing season.

Beaver activity observed on the Site during previous monitoring years had lessened due to proactive measurements taken by EEP. Abundant signs of beaver activity were observed throughout the Site during monitoring year 5 (2014); at the time of the site visit one beaver dam was located (Figure 2A, Appendix B). Proactive measures to control beaver are recommended to continue as necessary.

Summary information and data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the mitigation and restoration plan documents available on EEPs website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

2.0 METHODOLOGY

2.1 Vegetation Assessment

Ten vegetation plots were established and marked after construction with four foot metal U-bar post demarking the corners with a ten foot, three-quarter inch PVC at the origin. The plots are 10 meters square and are located randomly within the Site. These plots were surveyed using the *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008) (<u>http://cvs.bio.unc.edu/methods.htm</u>); results are included in Appendix C. The taxonomic standard for vegetation used for this document was *Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas* (Weakley 2007).

2.2 Stream Assessment

Annual stream monitoring will be conducted following procedures established in the USDA Forest Service Manual, *Stream Channel Reference Sites* (Harrelson et. al 1994) and methodologies utilized in the Rosgen stream assessment and classification system (Rosgen 1994 and 1996). Four permanent cross-sections, two riffle and two pool, were established and will be used to evaluate stream dimension; locations are depicted on Figures 2 and 2A-2B (Appendix B). Cross-sections are permanently monumented with 4-foot metal garden posts at each end point. Cross-sections will be surveyed to provide a detailed measurement of the stream and banks including points on the adjacent floodplain, top of bank, bankfull, breaks in slope, edge of water, and thalweg. Data will be used to calculate width-depth ratios, entrenchment ratios, and bank height ratios for each cross-section. In addition, photographs will be taken and pebble counts will be conducted at each permanent cross-section location annually.

Three approximately 1000-linear foot monitoring reaches were established and will be used to evaluate stream pattern and longitudinal profile; locations are depicted on Figures 2 and 2A-2B (Appendix B).

Measurements of channel pattern included belt-width, meander length, and radius of curvature (only in year one). Subsequently, data was used to calculated meander-width ratios. Longitudinal profile measurements will include average water surface slopes and facet slopes and pool-to-pool spacing. Ten permanent photo points were established throughout the restoration reach; locations are depicted on Figures 2 and 2A-2B (Appendix B) and plots are included in Appendix B. In addition, visual stream morphology stability assessments will be completed in each of the three monitoring reaches annually to assess the channel bed, banks, and in-stream structures.

2.3 Wetland Assessment

Three groundwater monitoring gauges were installed at the Site in February 2011 and have been maintained and monitored throughout growing season. Two gauges (Gauges 2 and 3) are located within delineated wetlands created by stream restoration activities and one gauge (Gauge 1) is located within a marginal area not in the delineated wetlands to assist with making a determination in marginal areas. Graphs of groundwater hydrology and precipitation are included in Appendix E.

3.0 REFERENCES

- Lee, Michael T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Version 4.2. (online). Available: http://cvs.bio.unc.edu/methods.htm.
- National Oceanic and Atmospheric Administration (NOAA). 2004. Climatography of the United States No. 20; Monthly Station Climate Summaries, 1971-2000. National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Climatic Data Center, Asheville, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2010. Final North Carolina 2010 Integrated Report Category 4 and 5 (303(d) List EPA Approved August 31, 2010) (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid=8ff0bb29-62c2-4b33-810c-2eee5afa75e9&groupId=38364 [December 1, 2010]. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.
- North Carolina Ecosystem Enhancement Program (NCEEP). 2007. Catawba River Basin Restoration Priorities. Available: http://www.nceep.net/services/restplans/RBRPCatawba2007.pdf [June 2010]. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- Weakley, Alan S. 2007. Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas (online). Available: http://www.herbarium.unc.edu/WeakleysFlora.pdf [February 1, 2008]. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina, Chapel Hill, North Carolina.
- Weather Underground. 2014. Station at Charlotte Douglas International Airport (KCLT) in Charlotte, North Carolina. (online). Available: <u>http://www.wunderground.com/history/airport/KCLT/2014/11/10/CustomHistory.html</u> [November 10, 2014].

APPENDIX A

PROJECT VICINITY MAP AND BACKGROUND TABLES

Figure 1. Vicinity Map

- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

Table 1. Project Components and Mitigation Credits McIntvre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243)

				Mitigatio	n Credits				
			Stream	0			Riparian Wetland		
Туре		Restoration	Resto	ration Equivalent	Re	Restoration		toration Equivalent	
Totals		5129*						0.57	
				Projects C	omponents				
Project Component/ Reach ID	Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio		Comment	
McIntyre Creek		~5000	Ι	Restoration	5178*	1:1	Priority I stream rest installation of in-str confluence of two inc with nativ	poration along the entire project, eam structures, stabilizing the coming tributaries, and planting we forest vegetation.	
Wetland		0		Creation	1.71	3:1			
				Component	Summation				
	Resto	ration Level		Stream (lin	Stream (linear footage)			Wetland (acres)	
	Re	estoration		5	5178				
	(Creation						1.71	
		Totals		5	178			1.71	
Mitigation Units				5129	SMUs*		0.57		

*Site activities restored 5178 linear feet of stream; however, 49 linear feet is located within a utility easement and is not included in the SMU calculation.

Table 2. Project Activity and Reporting HistoryMcIntyre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243)

Elapsed Time Since Grading Complete: 6.5 years Elapsed Time Since Planting Complete: 6.5 year Number of Reporting Years: 5

	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
Restoration Plan		December 2002
Construction Plans		March 2005
Site Construction and Planting		May 2008
As-built Construction Drawings		February 2008
Remediation Construction		January 2010
As-built Remediation Construction Drawings		November 2009
As-built Record Drawings		February 2010
Baseline Monitoring Document	July 2010	December 2010
Year 1 (2010) Monitoring Document	December 2010	December 2010
Year 2 (2011) Monitoring Document	November 2011	December 2011
Year 3 (2012) Monitoring Document	November 2012	November 2012
Beaver Management		Ongoing
Invasive Species Management		October 2013
Year 4 (2013) Monitoring Document	November 2013	December 2013
Year 5 (2014) Monitoring Document	November 2014	December 2014

Table 3. Project Contacts Table

McIntyre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243)

Designer	KCI Associates of North Carolina, P.A.							
	Landmark Center I, Suite 220							
	4601 Six Forks Road							
	Raleigh, NC 27609							
	Gary Mryncza 919-783-9214							
Construction and Planting Contractor	United Construction, Inc.							
	6000 Old Pineville Road							
	Charlotte, NC 28217							
	704-679-9229							
As-built Surveyor	CSC of NC PC							
	4455 Morris Park Drive, Suite F							
	Charlotte, NC 28227							
	Mohammad Zamani 704-573-0112							
Baseline Data Collection and	Axiom Environmental, Inc.							
Monitoring Performers	218 Snow Avenue							
	Raleigh, NC 27603							
	Grant Lewis 919-215-1693							

Project Information							
Project Name	McIntyre Creek Restoration Site						
Project County	Mecklenburg County, North Carolina						
Project Area	17 acres						
Project Coordinates	35.319972, -80.865133						
Project Watershed Su	mmary Information						
Physiographic Region	Piedmont						
Ecoregion	Southern Outer Piedmont						
Project River Basin	Catawba						
USGS 8-digit HUC	03050101						
USGS 14-digit HUC	03050101170020						
NCDWQ Subbasin	03-08-34						
Project Drainage Area	2.55 square miles						
Project Drainage Area Impervious Surface	>50%						
CGIA Land Use Classification	Urban High						
Reach Summar	y Information						
Restored length	5178 linear feet						
Drainage Area	2.55 square miles						
NCDWQ Index Number	11-120-3-(1)						
NCDWQ Classification	С						
Valley Type/Morphological Description	VIII/E5						
Dominant Soil Series	Monacan						
Drainage Class	Moderately well-somewhat poorly						
Soil Hydric Status	Contains 5% hydric Wehadkee soils						
Slope	0.0033						
FEMA Classification	100-Year Floodzone						
Native Vegetation Community	Bottomland Hardwood Forest						
Percent Composition of Exotic Invasives	5.9%						
Regulatory Co	nsiderations						
Regulation	Applicable						
Waters of the U.S. –Sections 404 and 401	Yes-Received Appropriate Permits						
Endangered Species Act	No						
Historic Preservation Act	No						
CZMA/CAMA	No						
FEMA Floodplain Compliance	Yes-Received a No Rise Certification						
Essential Fisheries Habitat	No						

Table 4. Project Baseline Information and AttributesMcIntyre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243)

APPENDIX B

VISUAL ASSESSMENT DATA

Figures 2 and 2A-2B. Current Conditions Plan View Tables 5A-5C. Visual Stream Morphology Stability Assessment Tables Table 6. Vegetation Condition Assessment Table Stream Fixed-Station Photos Vegetation Monitoring Plot Photos

100	and the second second	Contraction of the local division of the loc	And a lot of the lot o	
-	Latitude	Longitude		
n	35.31901	-80.87667		hand
n	35.31859	-80.87602		6
n	35.31784	-80.87533		
n	35.31792	-80.87444		
n	35.31851	-80.87234		
n	35.31847	-80.87068		
n	35.31824	-80.86931	ALC: NO	Axiom Environmental, Inc.
n	35.31837	-80.86792		Prenared for:
n	35.31873	-80.86621		
n	35.31895	-80.86570		
ank	35.31820	-80.87568		7
nk	35.31816	-80.87581	The second	
nk	35.31922	-80.87688		Freesewhere
ank	35.31929	-80.87679		E COSYSTEM
ank	35.31859	-80.86774		
ık	35.31849	-80.86773		
nk	35.31893	-80.86579	A Stable	Project:
ank	35.31901	-80.86584		MCINTYRE
3		× 111 ×		CREEK
- 100		A CONTRACTOR	1.21	RESTORATION
	100	igure 2	В	SITE
E.C.		X • 11	Nº WALL	
A -	1 4.1 M		1.18	NEST PARK
		A An	A LAND	
1	300	ALC: NO		Mecklenburg
		a toring	141	County, NC
à-	the mark	ALC: NO	- 11	Title:
. 13	1 * 0	ALC: NOT	1.1	
	3450			CURRENT
-			10	CONDITIONS
	1			PLAN
and the second		10		VIFW
	N			
~	9			
	THE PERSON		200 Barrie	
		HIRL		Drawn by:
1	and the second of	CHINESES.	T. ANK	CLF/KRJ
1 1	The state	CTOTANA.	The	Date:
2	The still	Callenge 1		NOV 2014
1/20	0 -	574		Scale:
IE.				1:3600
			A TANK	Project No ·
-			0	12-004.03
0	G			
E	3 / 32/			
1 3		1 200	$\mathbf{p} \in \mathbf{U}_{\mathbf{r}}$	FIGURE
* 1	2/11 Manut		AS W.S	
E	THE PARTY IS	wirt task at	201 200	
and a	1	and share	J'alle	2
SE	THE RECEIPTION OF	HE FRITA	TRIMINE CONTRACT	
	ALE & CAUDINTIN	an test		
5	Verse and		1 1:16	
SP, SW	isstopo, and	the GIS User	r Community	

Table 5A. Visual Stream Morphology Stability Assessment

McIntyre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243)

Reach ID Assessed Le	ength	Reach 1 1152								
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			ļ
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	17	17		. <u></u>	100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	17	17			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	17	17			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	17	17			100%			
		2. Thalweg centering at downstream of meander (Glide)	17	17			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	60	97%	2	40	99%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			1	25	99%	1	10	99%
	3. Mass Wasting	Bank slumping, calving, or collapse			7	260	89%	3	100	93%
				Totals	10	345	85%	6	150	92%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	7			86%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	6	7			86%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	7			86%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	6	7			86%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio <a>1.6 Rootwads/logs providing some cover at base-flow.	7	7			100%			

Table 5B. Visual Stream Morphology Stability Assessment

Reach ID

McIntyre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243)

Reach 2

Assessed Le	ngth	1113								
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	17	18			94%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	18	18			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	17	18			94%			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	18	18			100%			
		2. Thalweg centering at downstream of meander (Glide)	18	18			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			3	85	96%	0	0	96%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			2	75	97%	1	10	97%
	3. Mass Wasting	Bank slumping, calving, or collapse			1	50	98%	1	20	99%
				Totals	6	210	91%	2	30	92%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	6	8			75%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

Table 5C. Visual Stream Morphology Stability Assessment

Reach ID

McIntyre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243)

Reach 3

Assessed Le	ength	1172								
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	16	17			94%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	16	16			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	15	16			94%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	16	16			100%			
		2. Thalweg centering at downstream of meander (Glide)	17	17			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			4	120	95%	2	35	96%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			1	65	97%	1	25	98%
	3. Mass Wasting	Bank slumping, calving, or collapse			1	50	98%	0	0	98%
				Totals	6	235	90%	3	60	93%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	6			83%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	6			83%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	6			83%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	3	6			50%			
-	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	6	6			100%			

Table 6 Vegetation Condition Assessment

McIntyre Creek Restoration Site (EEP Project 243)

Planted Acreage	17						
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage	
1. Bare Areas	ΝΑ	None	NA	0	0.00	0.0%	
2. Low Stem Density Areas	NA	NA	NA	0	0.00	0.0%	
	Total						
3. Areas of Poor Growth Rates or Vigor	NA	NA	NA	0	0.00	0.0%	
		Cı	umulative Total	0	0.00	0.0%	

Easement Acreage ²	17					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Several large patches of kudzu (<i>Pueraria lobata</i>) throughout the Site, as well as scattered smaller patches of multiflora rose (<i>Rosa multiflora</i>), Chinese privet (<i>Ligustrum sinense</i>), and Japanese honeysuckle (<i>Lonicera japonica</i>).	20 SF	Yellow, orange, purple, and green	25	2.34	13.8%
5. Easement Encroachment Areas ³	NA	NA	NA	0	0.00	0.0%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EEP such as species present, their coverage, distribution relative biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species will shall be are fully dealy in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the condition for an area is somewhere between isolated specimes and dense, discreet patches. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be listed as a map inset, in legend items if the number of species area ton the pactive

McIntyre Creek Stream Fixed-Station Photographs Taken November 2014

McIntyre Creek Stream Fixed-Station Photographs Taken November 2014 (continued)

McIntyre Creek Vegetation Monitoring Photographs Taken November 2014

McIntyre Creek Vegetation Monitoring Photographs Taken November 2014 (continued)

Monitoring Year 5 of 5 (2014) December 2014 Appendices

APPENDIX C VEGETATION PLOT DATA

Table 7. Vegetation Plot Criteria Attainment

 Table 8. CVS Vegetation Plot Metadata

Table 9A. 2014 (Year 5) Total and Planted Stems by Plot and Species

Table 9B. Annual Totals and Planted Stems by Species

Table 7.	Vegetation P	lot Criteria	Attainn	nent	
McIntyr	e Creek Resto	oration Site	(EEP P	roject Number	: 234)

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	Yes	
3	Yes	
4	No*	
5	Yes	000/
6	Yes	90%
7	Yes	
8	Yes	
9	Yes	
10	Yes	

*Based on planted stems alone, plot 4 doesn't meet success criteria; however, when including naturally recruited stems of appropriate species such as green ash (*Fraxinus pennsylvanica*) and box elder (*Acer negundo*) plot 4 was well-above 260 stems per acre.

Table 8. CVS Vegetation Plot MetadataMcIntyre Creek Restoration Site (EEP Project Number 234)

Report Prepared By	Corri Faquin
Date Prepared	11/6/2014 12:07
database name	Axiom-EEP-2014-A-v2.3.1.mdb
database location	S:\CVS database\2014
computer name	PHILLIP-PC
file size	75567104
DESCRIPTION OF WORK	KSHEETS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Duci total stams	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems,
Plots	List of plots surveyed with location and summary data (live stems dead stems missing etc.)
Filots Vigor	End of proto surveyed with rocation and summary data (new sterns, dead sterns, missing, etc.).
Vigor by Spp	Frequency distribution of vigor classes listed by species
Vigor by Spp	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each
Damage	Damage values tallied by type for each species
Damage by Spp	Damage values tallied by type for each plet
Damage by Plot	Daniage values tailled by type for each plot.
ALL Stems by Plot and	A matrix of the count of PLANTED fiving stems of each species for each plot, dead and missing stems are
BDO IECT SUMMADY	
PROJECT SUMMARY	2/3
Project Code	And MaIntura Craak @ Harnata Nast Dark
project Name	stream restoration
Description	
River Basin	Catawba
length(ft)	5178
stream-to-edge width (ft)	130
area (sq m)	63120
Required Plots	NA
Sampled Plots	10

Table 9A. 2014 (Year 5) Total Planted and Natural Recruits Stems by Plot and Species

McIntyre Creek				Current Plot Data (MY5 2014)																												
			E24	3-AXE-C	0001	E24	3-AXE-0	0002	E24	3-AXE-	0003	E24	3-AXE-0	0004	E24	3-AXE-0	0005	E24	3-AXE-0	0006	E243	B-AXE-0	007	E243	B-AXE-0	8000	E24	3-AXE-0	0009	E243-AXE-0010		
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer negundo	boxelder	Tree			8			5	2	2	37			20			13			11			16			12			16			7
Acer rubrum	red maple	Tree																					4									
Acer saccharinum	silver maple	Tree																					2									
Alnus serrulata	hazel alder	Shrub													2	2	2	2	2	2	1	1	1	2	2	2						
Asimina triloba	pawpaw	Tree	1	1	3																											
Baccharis halimifolia	eastern baccharis	Shrub												3																		
Betula nigra	river birch	Tree	1	1	1	. 1	1	1	1	1	1				2	2	2	13	13	15	4	4	4	4	4	4	2	2	2	4	4	4
Carya	hickory	Tree			1																											
Catalpa bignonioides	southern catalpa	Tree																														
Cornus amomum	silky dogwood	Shrub				1	1	1	1	1	1				3	3	3	2	2	2	1	1	1	1	1	1	1	1	1			
Cornus florida	flowering dogwood	Tree																														
Diospyros virginiana	common persimmon	Tree																														
Euonymus alatus		Exotic																														
Fraxinus pennsylvanica	green ash	Tree	2	2	5	3	3	10	7	7	20			66			89	3	3	41			130			12	4	4	8	6	6	12
Juglans nigra	black walnut	Tree																														
Juniperus virginiana	eastern redcedar	Tree									4																					
Lindera benzoin	northern spicebush	Shrub	2	2	4	-																										
Liquidambar styraciflua	sweetgum	Tree			7	•					2			4			4									5						20
Liriodendron tulipifera	tuliptree	Tree	1	1	7	•		11										4	4	4						1				1	1	1
Morella	bayberry	shrub																														
Morella cerifera	wax myrtle	shrub																														1
Morus	mulberry	Tree												1																		
Morus rubra	red mulberry	Tree																														
Nyssa	tupelo	Tree																														
Pinus taeda	loblolly pine	Tree			1			1			1									2						36			3			
Platanus occidentalis	American sycamore	Tree	1	1	2	1	1	1																								
Populus deltoides	eastern cottonwood	Tree																														
Populus heterophylla	swamp cottonwood	Tree																														
Prunus serotina	black cherry	Tree																														
Quercus	oak	Tree																														
Quercus lyrata	overcup oak	Tree																														
Quercus michauxii	swamp chestnut oak	Tree																			1	1	1									
Quercus pagoda	cherrybark oak	Tree	4	4	4	-			2	2	2	1	1	1	2	2	2	1	1	1				3	3	3	1	1	1			
Quercus phellos	willow oak	Tree	3	3	3				1	1	1	4	4	4	1	1	1															
Quercus rubra	northern red oak	Tree																														
Salix	willow	Shrub or Tree																														
Salix nigra	black willow	Tree															2			4												
Ulmus	elm	Tree	2	2	2																											
Ulmus alata	winged elm	Tree							3	3	3																					
Ulmus americana	American elm	Tree	1	1	2	1	1	1						1																		
		Stem count	18	18	50	7	7	31	17	17	72	5	5	100	10	10	118	25	25	82	7	7	159	10	10	76	8	8	31	11	11	45
		size (ares)		1			1			1			1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	10	10	14	5	5	8	7	7	10	2	2	8	5	5	9	6	6	9	4	4	8	4	4	9	4	4	6	3	3	6
		Stems per ACRE	728.4	728.4	2023	283.3	283.3	1255	688	688	2914	202.3	202.3	4047	404.7	404.7	4775	1012	1012	3318	283.3	283.3	6435	404.7	404.7	3076	323.7	323.7	1255	445.2	445.2	1821
Color for Density			PnoLS	= Plante	ed stem	ns exclu	ding live	estakes																								

Color for Density

P-all= Planted stems including livestakes

Exceeds requirements by 10% Exceeds requirements, but by less than 10%

T = Planted stems and natural recruits

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Total includes stems of natural recruits

Table 9B. Annual Total Planted and Natural Recruits Stems by Species

McIntyre Creek			Annual Means																	
			Μ	Y5 (20	14)	М	Y4 (201	.3)	Μ	Y3 (20 1	L2)	М	Y2 (201	1)	М	Y1 (201	.0)	M	YO (201	.0)
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т
Acer negundo	boxelder	Tree	2	2	145	3	3	60	3	3	55	3	3	156	3	3	58	3	3	127
Acer rubrum	red maple	Tree			4			4			40			16						50
Acer saccharinum	silver maple	Tree			2															
Alnus serrulata	hazel alder	Shrub	7	7	7	7	7	7	7	7	7	7	7	7	6	6	9	6	6	7
Asimina triloba	pawpaw	Tree	1	1	3	1	1	3	1	1	1	1	1	1	1	1	1	1	1	18
Baccharis halimifolia	eastern baccharis	Shrub			3			4			6			13			8			22
Betula nigra	river birch	Tree	32	32	34	33	33	42	33	33	36	35	35	55	13	13	29	14	14	67
Carya	hickory	Tree			1	1	1	3	1	1	6	1	1	1	1	1	1	1	1	1
Catalpa bignonioides	southern catalpa	Tree																		2
Cornus amomum	silky dogwood	Shrub	10	10	10	10	10	10	10	10	11	10	10	10	9	9	9	9	9	9
Cornus florida	flowering dogwood	Tree																		2
Diospyros virginiana	common persimmon	Tree																		5
Euonymus alatus		Exotic																1	1	1
Fraxinus pennsylvanica	green ash	Tree	25	25	393	25	25	296	25	25	397	27	27	513	27	27	278	25	25	1513
Juglans nigra	black walnut	Tree												1						3
Juniperus virginiana	eastern redcedar	Tree			4			1						1						3
Lindera benzoin	northern spicebush	Shrub	2	2	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Liquidambar styraciflua	sweetgum	Tree			42			87			102			57			43			82
Liriodendron tulipifera	tuliptree	Tree	6	6	24	6	6	19	8	8	19	9	9	16	9	9	19	9	9	25
Morella	bayberry	shrub															1			
Morella cerifera	wax myrtle	shrub			1															2
Morus	mulberry	Tree			1															
Morus rubra	red mulberry	Tree																		5
Nyssa	tupelo	Tree																		3
Pinus taeda	loblolly pine	Tree			44			11			57			54			40			76
Platanus occidentalis	American sycamore	Tree	2	2	3	2	2	3	2	2	2	1	1	7	1	1	6	1	1	8
Populus deltoides	eastern cottonwood	Tree						2			13			26						35
Populus heterophylla	swamp cottonwood	Tree																		4
Prunus serotina	black cherry	Tree												4						4
Quercus	oak	Tree				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Quercus lyrata	overcup oak	Tree				1	1	1	1	1	1	1	1	1	1	1	1			
Quercus michauxii	swamp chestnut oak	Tree	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Quercus pagoda	cherrybark oak	Tree	14	14	14	14	14	14	15	15	15	15	15	15	13	13	13	14	14	14
Quercus phellos	willow oak	Tree	9	9	9	9	9	9	9	9	9	9	9	9	10	10	10	10	10	10
Quercus rubra	northern red oak	Tree				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Salix	willow	Shrub or Tree																		1
Salix nigra	black willow	Tree			6						2			1						
Ulmus	elm	Tree	2	2	2	2	2	8	3	3	4	5	5	6	4	4	4	5	5	9
Ulmus alata	winged elm	Tree	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3			2
Ulmus americana	American elm	Tree	2	2	4	2	2	2	1	1	1									
		Stem count	118	118	764	124	124	594	127	127	792	132	132	978	106	106	538	104	104	2115
		size (ares)		10			10			10			10			10			10	
		size (ACRES)		0.25			0.25			0.25			0.25			0.25			0.25	
		Species count	15	15	25	19	19	25	19	19	25	18	18	27	18	18	22	17	17	34
		Stems per ACRE	477.5	477.5	3092	501.8	501.8	2404	514	514	3205	534.2	534.2	3958	429	429	2177	420.9	420.9	8559
Color for Density			Pnol S	= Plant	ed stem	is exclu	ling live	estakes												

Color for Density Exceeds requirements by 10%

P-all= Planted stems including livestakes

Exceeds requirements, but by less than 10% T = Planted stems and natural recruits

Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% Total includes stems of natural recruits

APPENDIX D

STREAM SURVEY DATA

Cross-section Plots

Longitudinal Profile Plots

Substrate Plots

Tables 10a-b. Baseline Stream Data Summary

Tables 11a-b. Monitoring Data

River Basin:	Catawba
Watershed:	McIntyre Creek
XS ID	XS - 1, Pool
Feature	Pool
Date:	2/27/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation	
0.0	97.43	
3.0	97.31	
4.8	96.77	
6.1	96.82	
6.6	97.24	
7.3	97.14	
8.0	95.39	
8.8	94.22	
10.8	93.41	
12.8	92.45	
15.2	91.76	
16.5	90.71	
18.4	90.22	
19.5	90.67	
22.1	92.00	
23.5	92.76	
24.2	92.98	
25.4	95.38	
26.5	95.58	
28.2	96.71	
30.0	97.3	
31.4	97.8	
34.4	97.6	

SUMMARY DATA	
Bankfull Elevation:	96.5
Bankfull Cross-Sectional Area:	76.1
Bankfull Width:	20.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	6.3
Mean Depth at Bankfull:	3.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type E

River Basin:	Catawba
Watershed:	McIntyre Creek
XS ID	XS - 2, Riffle
Feature	Riffle
Date:	2/27/2014
Field Crew:	Perkinson, Jernigan

SUMMARY DATA	
Bankfull Elevation:	97.6
Bankfull Cross-Sectional Area:	33.6
Bankfull Width:	14.7
Flood Prone Area Elevation:	100.6
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.0
Mean Depth at Bankfull:	2.3
W / D Ratio:	6.4
Entrenchment Ratio:	10.2
Bank Height Ratio:	1.0

Stream Type E

Station	Elevation
0.00	99.13
5.47	98.80
9.21	98.49
10.22	98.48
10.85	97.76
11.98	97.25
12.95	96.79
13.76	94.64
14.83	94.69
16.65	94.60
18.63	94.72
19.97	94.91
21.37	95.00
22.93	94.94
24.05	95.24
24.8	96.07
25.9	97.63
27.3	98.04
28.6	98.35
30.7	99.29
33.5	99.61
37.4	99.54

River Basin:	Catawba
Watershed:	McIntyre Creek
XSID	XS - 3, Riffle
Feature	Riffle
Date:	2/27/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	107.97
3.07	108.30
4.80	108.52
6.21	108.11
7.22	107.60
9.24	105.00
10.13	104.70
11.54	104.67
12.37	104.71
13.48	104.83
14.33	104.80
15.41	105.10
16.62	105.61
17.53	106.15
19.2	107.70
20.8	107.77
23.1	107.4
24.6	107.6
26.9	107.5

SUMMARY DATA	
Bankfull Elevation:	107.2
Bankfull Cross-Sectional Area:	20.9
Bankfull Width:	11.2
Flood Prone Area Elevation:	109.7
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.5
Mean Depth at Bankfull:	1.9
W / D Ratio:	6.0
Entrenchment Ratio:	13.4
Bank Height Ratio:	1.0

Е

Stream Type

River Basin:	Catawba
Watershed:	McIntyre Creek
XS ID	XS - 4, Pool
Feature	Pool
Date:	2/27/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.5	110.7
2.9	110.6
3.4	110.5
4.3	105.6
7.2	105.1
8.7	104.0
10.6	104.4
12.2	105.1
14.3	106.2
15.0	106.5
15.9	107.0
17.1	108.6
18.3	109.2
20.5	109.6
23.6	110.1
26.6	110.2

SUMMARY DATA	
Bankfull Elevation:	109.2
Bankfull Cross-Sectional Area:	50.1
Bankfull Width:	14.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	5.2
Mean Depth at Bankfull:	3.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

C/E

Stream Type

Proje	ct Name	McIntyre Creek - Year 5 (2014) Profile	

McIntyre Creek - Year 5 (2 Reach 1 (00+00 - 11+50) Profile 2/27/14 Perkinson, Jernigan

Froject N Reach Feature Date Crew

	Terkinson, sering													
I .	2010		2010		2011		2012		2012			2014		
Ae-bi	ult Survey	Vear 1 Mo	2010 nitoring \Survey	Year 2 Monitoring \Survey		Vear 3 Monitoring \Survey		Vear 4 Monitoring \Survey			v	aar 5 Monitoring	Survey	
Station	Red Elevation	Station	Red Elevation	Station	Red Elevation	Station	Bed Elevation	Station	Red Elevation	Water Elevation	Station	Red Elevation	Water Elevation	
0.0	90.0	-13.1	88.0	-23.8	88.0	-191	88.6	10.6	89.8	90.7	-4.0	89.3	90.6	
28.8	90.1	3.4	89.5	-17.1	88.0	-11.7	88.9	44.5	90.2	91.0	37.4	90.2	90.8	
76.2	91.1	41.8	90.1	5.8	89.8	6.2	90.3	86.5	91.1	91.6	87.8	91.0	91.6	
91.6	88.9	87.6	91.0	41.5	90.2	44.1	90.2	102.3	89.0	91.6	95.3	89.6	91.6	
115.6	89.1	103.3	89.0	82.6	91.0	90.8	90.8	125.4	88.2	91.7	122.8	88.8	91.6	
123.7	91.2	129.2	89.4	96.7	89.0	101.0	88.9	134.9	91.3	92.1	129.2	91.2	92.0	
153.3	92.3	135.8	91.1	109.1	88.5	115.1	88.3	171.7	91.9	92.7	167.8	91.9	92.7	
168.2	91.5	165.9	92.3	121.6	88.7	124.0	88.3	184.5	91.0	92.8	181.0	91.1	92.7	
187.5	91.1	184.9	91.2	121.7	88.7	134.6	91.3	197.8	91.1	92.8	193.0	91.1	92.6	
195.2	92.3	199.3	91.1	131.5	91.3	162.5	92.4	204.1	92.3	92.7	198.5	92.3	92.7	
207.4	92.5	211.6	92.6	159.1	92.4	183.6	91.0	235.1	93.0	93.4	229.6	93.1	93.3	
224.3	93.0	236.6	93.0	163.6	91.5	200.6	91.2	244.6	90.4	93.5	239.1	90.2	93.4	
232.6	91.1	245.6	91.1	178.1	91.2	209.9	92.6	258.5	90.1	93.5	256.7	91.2	93.4	
240.7	89.9	253.0	90.2	192.7	90.8	234.5	93.0	264.8	93.5	93.8	259.7	93.5	93.6	
251.7	91.6	260.6	91.2	205.0	92.6	246.9	90.2	269.3	91.9	93.8	292.5	92.3	93.5	
254.7	93.5	266.9	93.5	230.6	93.0	258.2	90.2	284.6	92.4	93.8	301.2	90.6	93.6	
260.4	92.3	291.4	92.6	240.6	90.7	264.8	93.5	296.7	92.3	93.8	318.6	90.4	93.6	
283.4	92.2	308.8	91.2	255.5	90.8	296.4	92.2	305.5	91.0	93.8	331.2	92.3	93.6	
297.3	91.2	328.6	90.5	260.4	93.5	301.9	90.7	327.4	90.4	93.8	352.5	92.2	93.6	
308.1	91.5	340.0	92.6	265.0	92.1	325.2	90.2	335.0	92.3	93.8	358.7	91.0	93.6	
314.1	90.3	350.9	92.5	271.5	92.1	337.2	92.5	359.5	92.0	93.8	370.6	91.4	93.6	
326.8	89.3	368.3	92.0	280.4	92.9	360.9	92.4	370.6	90.9	93.8	381.9	92.7	93.6	
341.2	92.5	381.8	91.7	292.1	92.1	375.2	90.7	381.0	91.6	93.9	396.9	92.7	93.6	
347.8	92.5	391.3	93.0	300.6	91.2	385.8	92.5	387.5	92.8	93.8	402.7	91.9	93.6	
357.9	91.9	405.4	92.8	320.9	90.3	415.4	92.0	434.4	92.0	93.8	419.4	91.5	93.6	
369.2	91.7	419.6	91.7	334.3	92.5	440.7	91.8	451.9	90.3	93.8	423.9	92.1	93.6	
376.7	92.9	431.8	91.8	352.8	92.4	453.1	90.3	465.6	90.6	93.8	433.5	91.4	93.6	
ſ							Mc	Intyre Cre	ek Year 5 (20	14) Profile - R	each 00+0	00 to 11+50		
99 - 97 -														
trary)														

	As-built	2010	2011	2012	2013	2014
Avg. Water Surface Slope	0.0035	0.0042	0.0041	0.0043	0.0046	0.0045
Riffle Length	32	26	27	34	34	36
Avg. Riffle Slope	0.0042	0.0047	0.0023	0.0034	0.0040	0.0048
Pool Length	16	19	20	18	17	25
Avg. Pool Slope	76	76	0.0023	0.0033	0.0008	0.0003

e

Reach 2 (16+50 - 27+50) Reach Feature Profile 2/27/14

Date Crew

Perkinson, . 2010 2011 2012 2014 2010 2013 Year 3 Monitoring \Survey As-built Survey Year 1 Monitoring \Survey Year 2 Monitoring \Survey Year 4 Monitoring \Survey Year 5 Monitoring \Survey Station 1639.0 Bed Elevation Station **Bed Elevatio** Station **Bed Elevation** Station Bed Elevation Station Bed Elevation Water Elevat Station Bed Elevation Water Elevatio 97.7 98.0 1660.7 98.0 95.9 95.4 1660.3 98.0 95.4 95.3 1657.2 98.0 95.7 95.2 1657.2 98.0 98.4 1659.2 98.0 1660.7 1667.1 95.2 95.2 1672.6 1673.5 1666.5 1670.0 98.4 1670.4 95.2 1681.9 1689.6 1683.0 1688.8 98.3 1695.5 95.3 96.5 95.5 95.9 96.2 95.8 96.7 95.1 94.4 96.8 98.2 96.3 95.4 95.2 1680.9 1690.5 1700.4 1690.0 1698.9 98.3 1701.2 95.9 95.8 96.8 95.3 95.8 96.5 95.2 94.6 98.2 96.9 96.8 96.5 96.5 97.8 98.0 97.4 96.1 96.5 97.4 96.5 97.4 96.5 97.4 96.5 97.4 97.7 96.7 95.1 95.0 95.6 95.6 95.6 97.0 96.9 96.9 96.1 96.9 96.7 97.7 97.3 95.4 96.9 97.7 97.6 97.6 98.8 98.6 97.7 95.4 95.5 96.3 95.4 96.2 95.1 93.9 94.2 98.0 96.4 96.2 97.3 96.4 95.2 96.2 96.8 96.4 95.2 96.2 96.2 97.3 98.1 97.3 98.1 97.5 97.4 97.5 1681.2 1700.6 1708.9 1696.0 1709.5 98.2 1708.4 95.1 95.0 1691.8 1708.4 1737.9 1703.1 1713.1 98.3 98.3 98.3 1733.9 96.3 94.9 94.9 98.1 94.9 98.2 95.5 95.4 1703.4 1709.4 1712.0 1720.9 1714.1 1721.9 1723.2 1737.0 1745.7 1757.4 1760.1 1763.8 1722.7 1735.8 1734.4 1765.4 1787.6 1732.2 1756.8 1763.4 1771.0 1784.9 98.3 98.4 1754.1 1763.9 1791.8 1749.7 1769.0 96.0 96.0 96.6 98.4 1793.5 96.2 96.3 96.2 1762.1 1764.9 98.4 98.4 1761.5 1773.9 1816.4 1775 4 1803.9 1803.7 1825.5 1770.5 1780.5 1814.6 1764.9 1766.3 1789.2 1805.7 1815.7 1822.0 1829.8 1856.8 98.4 98.5 98.4 98.4 98.4 98.4 1790.5 1812.3 96.9 96.9 96.3 96.7 97.7 97.4 96.0 96.4 96.9 98.3 98.2 97.8 1814.3 1837.9 1809.0 1822.7 96.9 97.3 97.1 96.5 94.9 95.8 97.9 96.5 97.7 96.4 95.0 95.7 96.3 98.1 1821.3 1856.1 1826.0 1830.3 1864.8 1873.8 1830.5 1870.2 1824.4 1847.2 1838.1 1855.6 1862.1 1870.8 1890.0 1855.3 1899.6 1863.9 1881.7 1870.8 1876.9 1919.2 1937.6 1868.7 1876.0 1886.8 1897.4 98.4 98.5 1890.1 1898.1 97.9 97.6 97.1 96.7 97.0 98.7 97.4 1870.4 1893.7 1951.4 1886.3 1914.0 98.5 1940.2 97.4 1876.9 1888.1 1912.5 1964.5 1890.5 1949.9 98.6 98.5 1954.0 96.6 96.6 1935.1 1972.2 1895.3 1955.5 1970.3 1953.4 1957.4 96.9 96.8 96.9 1975.9 1990.9 1917.0 1937.0 1898.7 1968.4 98.6 1973.9 98.7 1917.7 1973.5 99.0 1989.0 97.7 1940.5 1971.0 1997.7 1942.9 1990.1 99.1 1997.6 95.7 1950.2 97.1 1974.6 98.7 2006.5 96.4 1960.4 96.7 1996.4 95.4 99.1 2017.8 96.6 98.9

	As-built	2010	2011	2012	2013	2014
vg. Water Surface Slope	0.0035	0.0022	0.0020	0.0026	0.0025	0.0021
iffle Length	32	30	25	28	38	31
vg. Riffle Slope	0.0042	0.0010	0.0010	0.0012	0.0014	0.0005
ool Length	16	15	10	15	17	20
			0 0000	0.0011	0.0010	0.0040

ſ	Project Name	McIntyre Creek - Year 5 (2014) Profile	
---	--------------	--	--

Reach 3 (36+00 - 47+55) Profile 2/27/14

Reach Feature Date

rew	Perkinson, Jernig	an												
2	010	2010		2010 2011		2012			2013	0	2014			
As-Du	itt Survey	Year I Mo	nitoring (Survey	Year 2 Mo	ittoring (Survey	Year 3 Mo	nitoring (Survey	Y	ear 4 Monitoring	Survey	Y	ear 5 Monitoring	Survey	
Station	Bed Elevation	Station	Bed Elevation	Station	Bed Elevation	Station	Bed Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	
3595.8	103.8	3600.4	102.8	3594.1	103.8	3588.8	103.5	3600.0	103.8	103.9	3596.0	103.4	103.6	
3612.0	103.7	3611.1	103.4	3611.8	103.5	3604.6	103.2	3617.3	103.5	104.1	3614.7	103.2	103.7	
3620.2	102.5	3615.7	102.3	3616.8	102.1	3608.6	102.9	3623.4	102.1	104.0	3619.1	101.7	103.7	
3629.0	102.4	3626.9	102.0	3625.8	102.0	3614.2	101.7	3630.1	101.9	104.1	3634.2	101.7	103.7	
3633.6	102.8	3632.0	102.3	3638.2	102.3	3622.9	101.8	3640.3	102.1	104.1	3643.8	102.9	103.7	
3650.1	102.7	3639.3	102.3	3651.1	102.4	3631.1	102.0	3647.1	102.6	104.1	3650.6	102.0	103.7	
3662.4	102.5	3654.0	102.4	3657.4	102.7	3638.1	102.2	3653.7	102.6	104.1	3680.0	102.1	103.7	
3674.4	102.4	3662.0	102.6	3663.9	102.0	3645.6	102.3	3664.9	101.9	104.1	3689.3	102.8	103.7	
3681.7	102.8	3666.8	101.9	3672.5	101.8	3650.3	102.6	3673.7	101.5	104.1	3712.0	102.7	103.7	
3695.1	103.2	3674.6	102.0	3684.6	102.8	3654.7	102.3	3674.9	101.6	104.1	3720.9	102.3	103.7	
3717.0	103.1	3681.6	102.6	3701.3	102.8	3662.8	101.5	3687.9	102.6	104.1	3747.0	102.0	103.7	
3730.2	103.0	3692.8	102.9	3733.0	102.8	3676.6	102.2	3706.3	102.7	104.1	3759.8	101.3	103.7	
3747.3	102.4	3716.4	102.6	3745.5	102.2	3689.4	102.6	3726.2	102.6	104.1	3768.1	102.2	103.7	
3751.6	102.1	3743.5	102.8	3756.5	102.0	3700.7	102.4	3737.8	102.9	104.1	3788.0	102.9	103.7	
3767.3	103.2	3749.0	102.0	3762.5	102.6	3709.4	102.4	3752.8	102.1	104.1	3810.2	102.7	103.8	
3788.1	103.4	3757.9	102.0	3794.4	103.2	3719.2	102.3	3762.0	101.3	104.1	3829.0	102.2	103.8	
3819.3	102.9	3762.6	102.2	3796.5	103.2	3735.4	102.4	3766.8	102.4	104.1	3843.3	102.3	103.8	
3830.3	102.8	3770.2	102.0	3807.6	103.1	3746.3	101.3	3798.1	103.2	104.1	3855.6	101.9	103.8	
3837.4	103.5	3772.2	103.0	3825.6	102.5	3752.9	101.3	3819.4	102.7	104.1	3858.9	103.7	104.0	
3844.1	102.6	3795.8	103.0	3835.2	102.6	3761.7	102.3	3831.2	102.7	104.1	3902.6	103.1	104.0	
3855.3	102.9	3823.8	102.5	3851.0	102.3	3770.6	102.9	3840.1	102.5	104.1	3906.5	102.4	104.0	
3857.4	104.1	3836.0	102.6	3855.4	103.9	3776.9	102.7	3852.0	102.5	104.1	3918.1	102.1	104.0	
3882.6	103.4	3841 7	102.3	3877.3	103.0	3785.3	103.1	3857.8	102.1	104.1	3924.6	103.8	104.2	
3803.1	103.4	3853.8	102.5	3884.3	103.0	3704.4	102.9	3861.0	104.0	104.2	3033.1	103.1	104.2	
3011.6	102.8	3855.4	104.0	3802.8	102.6	3804.7	102.9	3881.7	103.3	104.3	3037.2	102.7	104.2	
3021.5	104.4	3871.7	103.3	3003.4	102.5	3812.0	102.6	3903.0	103.3	104.3	3950.2	102.7	104.2	
3921.3	104.4	30/1./	103.5	3903.4	102.5	3012.9	102.0	3903.0	103.3	104.5	3950.2	102.7	104.2	
3944.6	103.5	3890.9	102.6	3919.5	102.6	3823.7	102.4	3910.5	102.7	104.3	3954.1	103.5	104.3	
	103.2	- Conin C	1077		1112 11		111.7 A		1113 /	104.4	GISHT	107.6	104.7	
							Mc	Intyre Cree	ek Year 5 (2014	4) Profile - Rea	ch 36+00 t	o 47+55		
109														
108														
107														
≥ 106														
105														

	As-built	2010	2011	2012	2013	2014
Avg. Water Surface Slope	0.0035	0.0020	0.0025	0.0029	0.0027	0.0027
Riffle Length	32	35	28	29	30	37
Avg. Riffle Slope	0.0042	0.0027	0.0003	0.0022	0.0021	0.0022
Pool Length	16	12	16	16	17	17
Pool to Pool Spacing	76	76	0.0005	0.0018	0.0014	0.0006

	Project Name: McI	ntire Creek Re	ach 3			
	Cross-Se	ection: 1				
	Feature	e: Pool	-			
Description	Matorial	Size (mm)	Total #	2014	Cum 0/	Cumulative Percent
Description Site/Class	iviateriai		10tal #	2(0/	2(0/	100%
Sitt/Clay	siit/ciay	0.062	30	30%	30%	
	fine send	0.125	8	8%0 40/	44%	50%
C d	inte sand	0.250	4	4%	48%	
Sanu	incurum sanu	0.50	0	0%	48%	
	coarse sand	1.00	8	8%	50%	2 50%
	very coarse sand	2.0	4	4%	60%	
	very nne gravel	4.0	8	8%0	08%	
	fine gravel	5.7	4	4%	72%	
	tine gravel	8.0	12	12%	84%	
C I	medium gravel	11.3	8	8%	92%	
Gravel	medium gravel	16.0	0	0%	92%	
	course gravel	22.3	4	4%	96%	Particle Size (mm)
	course gravel	32.0	0	0%	96%	MY1-2010 MY2-2011 MY3-2012 MY4-2013 MY5-2014
	very coarse gravel	45	0	0%	96%	
	very coarse gravel	64	4	4%	100%	
	small cobble	90	0	0%	100%	
Cobble	medium cobble	128	0	0%	100%	Individual Class Percent
	large cobble	180	0	0%	100%	
	very large cobble	256	0	0%	100%	100%
	small boulder	362	0	0%	100%	90%
Boulder	small boulder	512	0	0%	100%	80%
	medium boulder	1024	0	0%	100%	22 70%
	large boulder	2048	0	0%	100%	
Bedrock	bedrock	40096	0	0%	100%	
TOTAL % of	whole count		100	100%	100%	
		1				
Summary	Data 0.6					
D50 D84	0.0					
D95	20					ිසිට්ටු විදු බද 🗸 🗸 දට දු රට දේවා දු දු හා හැ හැ හා විදු හා විදු හා වැන් විදු හා හැ
		1				Darticla Siza (mm)
						■ MY 1-2010 ■ MY 2-2011 ■ MY 3-2012 ■ MY 4-2013 ■ MY 3-2014

	Featur	e: Riffle			
				2014	
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	28	33%	33%
	very fine sand	0.125	8	10%	43%
	fine sand	0.250	4	5%	48%
Sand	medium sand	0.50	4	5%	52%
	coarse sand	1.00	8	10%	62%
	very coarse sand	2.0	4	5%	67%
	very fine gravel	4.0	0	0%	67%
	fine gravel	5.7	0	0%	67%
	fine gravel	8.0	4	5%	71%
	medium gravel	11.3	4	5%	76%
Gravel	medium gravel	16.0	8	10%	86%
	course gravel	22.3	4	5%	90%
	course gravel	32.0	4	5%	95%
	very coarse gravel	45	0	0%	95%
	very coarse gravel	64	0	0%	95%
	small cobble	90	4	5%	100%
Cabble	medium cobble	128	0	0%	100%
Cobble	large cobble	180	0	0%	100%
	very large cobble	256	0	0%	100%
	small boulder	362	0	0%	100%
D	small boulder	512	0	0%	100%
Boulder	medium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
TOTAL % of	whole count		84	100%	100%
Summary	/ Data				
D50	0.4				
D84	15				
D95	31				

	Cross-S	Section: 3			
	Featur	e: Riffle	1	2014	
Description	Matarial	Size (mm)	Total #	2014	Cum %
Silt/Clay	silt/clay	0.062	24	2/1%	2/1%
ShuClay	very fine sand	0.125	8	24/0 8%	32%
	fine sand	0.125	12	12%	44%
Sand	medium sand	0.230	4	12/0	4470
Sanu	coarse sand	1.00	8	470 8%	56%
	very coarse sand	2.0	4	4%	60%
	very fine gravel	4.0	8	8%	68%
	fine gravel	5.7	4	4%	72%
	fine gravel	8.0	8	8%	80%
	medium gravel	11.3	0	0%	80%
Gravel	medium gravel	16.0	4	4%	84%
Grunter	course gravel	22.3	12	12%	96%
	course gravel	32.0	0	0%	96%
	very coarse gravel	45	0	0%	96%
	very coarse gravel	64	4	4%	100%
	small cobble	90	0	0%	100%
	medium cobble	128	0	0%	100%
Cobble	large cobble	180	0	0%	100%
	very large cobble	256	0	0%	100%
	small boulder	362	0	0%	100%
	small boulder	512	0	0%	100%
Boulder	medium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
TOTAL % of	whole count		100	100%	100%
Summar	y Data				
D50	0.6				
D84	16				
D95	21				

	Featu	re: Pool			
				2014	
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	68	68%	68%
	very fine sand	0.125	4	4%	72%
	fine sand	0.250	12	12%	84%
Sand	medium sand	0.50	0	0%	84%
	coarse sand	1.00	4	4%	88%
	very coarse sand	2.0	4	4%	92%
	very fine gravel	4.0	8	8%	100%
	fine gravel	5.7	0	0%	100%
	fine gravel	8.0	0	0%	100%
	medium gravel	11.3	0	0%	100%
Gravel	medium gravel	16.0	0	0%	100%
	course gravel	22.3	0	0%	100%
	course gravel	32.0	0	0%	100%
	very coarse gravel	45	0	0%	100%
	very coarse gravel	64	0	0%	100%
	small cobble	90	0	0%	100%
Cabble	medium cobble	128	0	0%	100%
Cobble	large cobble	180	0	0%	100%
	very large cobble	256	0	0%	100%
	small boulder	362	0	0%	100%
Douldon	small boulder	512	0	0%	100%
Boulder	medium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
TOTAL % of	whole count		100	100%	100%
Summar	y Data				
D50	NA				
D84	0				
D93	3	_			

Table 10a.	Baseline	Stream	Data S	Summary	

McIntyre Creek at Hornets Nest Park (EEP Project Number 243)

Parameter	Gauge		Regional Cu	urve		Pre-Exi	isting C	ondition	ı		Reference	Reach(es) Data			Design			Monit	oring Ba	seline	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)					17.0			23.8			13.1				18.7	22.9		16.7			17.6	
Floodprone Width (ft)					100			300			78				100	300		150			150	
BF Mean Depth (ft)					2.5			2.7			1.6				2.3	2.8		1.5			2.0	1
BF Max Depth (ft)					3.1			3.7			2.8				3.3	4.0		2.9			3.2	
BF Cross Sectional Area (ft ²)					42.1			58.6			21.3				42.0	70.0		26.4			32.9	
Width/Depth Ratio					6.9			9.7			8.1				8.1	8.1		8.5			11.7	
Entrenchment Ratio					4.5			17.5			5.9				5.0	16.0		8.5			9.0	
Bank Height Ratio					1.3			1.9			1.0				1.0	1.0		1.0			1.0	
Profile																						-
Riffle length (ft)																		10.1	32.1	32.8	91.7	
Riffle slope (ft/ft)					0.003			0.006		0.0050			0.0110		0.0025	0.0065		0.0000	0.0012	0.0042	0.0313	1
Pool length (ft)										7.0			18.0		12.0	37.0		4.3	17.3	15.6	59.6	
Pool Max depth (ft)					4.1			4.1			3.2				2.9	3.4		5.0			5.3	
Pool spacing (ft)										11.0			45.0		46.0	115.0		48.0	77.0	76.0	169.0	
Pattern																						-
Channel Beltwidth (ft)					34			58			38				95	115		19	45	41	107	
Radius of Curvature (ft)					60.3			148.1		10.3			25.6		37	70		24	49	40	246	1
Rc:Bankfull width (ft/ft)					2.6			6.3		0.8			2		2	4		1.4	2.8	2.3	14.3	
Meander Wavelength (ft)					4.1			7.3		60			71		90	230		88	132	128	220	
Meander Width ratio					1.4			2.5		4.6			5.4		5	10		1.1	2.6	2.4	6.2	
Transport parameters																						
Reach Shear Stress (competency) lbs/ft ²																						
Max part size (mm) mobilized at bankfull																						
Stream Power (transport capacity) W/m ²																						
Additional Reach Parameters																						
Rosgen Classification							E5-type	e			E	E5-type				E5-type				E-type		
Bankfull Velocity (fps)							4.0 - 4.	5								4.2 - 4.4						
Bankfull Discharge (cfs)]	180 - 28	0														
Valley Length (ft)	y Length (ft)											240										
Channel Thalweg Length (ft)	Thalweg Length (ft)											300				5178				5178		
Sinuosity	Sinuosity					I	1.1 - 1.2	22				1.25				1.4				1.4		
Water Surface Slope (ft/ft)	Water Surface Slope (ft/ft)				0.0	021 - 0.	0027			(0.0044			0.0	021-0.00)25			0.0035			
BF slope (ft/ft)	BF slope (ft/ft)																					
Bankfull Floodplain Area (acres)	ea (acres)																					
% of Reach with Eroding Banks	ng Banks			ļ																		
Channel Stability or Habitat Metric						34	- 39 B	EHI								_	_			_	_	_
Biological or Other																						

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) McIntyre Creek at Hornets Nest Park (EEP Project Number 243)

Parameter		Pre-Existi	ng Conditi	on			Referer	nce Reach(es) Data			Design			Mo	onitor	ing Ba	seline	3	
Ri%/RU%P%G%/S%														45	14	25	15 ľ	NA		
SC%/SA%/G%/C%/B%BE%																				
d16/d35/d50/d84/d95		0.2-0.3	4.0-12.0				0.5	3.0-5.0												
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																				
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0						300								5178						

Table 11a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) McIntyre Creek at Hornets Nest Park (EEP Project Number 243)

Wienityre Creek at Hornets rest I al	K (LLI I	roject nu						-																				
			C	ross Sectio	on 1					C	ross Sectio	on 2					C	ross Sectio	n 3					Cr	oss Sectio	n 4		
Parameter				Pool							Riffle							Riffle							Pool			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)	20.0	19.6	19.4	19.4	18.6	20.3		16.7	17.0	15.9	16.1	15.2	14.7		17.6	17.0	11.1	10.9	10.9	11.2		15.5	15.5	13.7	13.1	13.5	14.7	
Floodprone Width (ft) (approx)	NA	NA	NA	NA	NA	NA		150.0	150.0	150.0	150.0	150.0	150.0		150.0	150.0	150.0	150.0	150.0	150.0		NA	NA	NA	NA	NA	NA	
BF Mean Depth (ft)	2.8	3.0	3.2	3.6	3.6	3.7		2.0	2.0	2.1	2.1	2.1	2.3		1.5	1.5	2.1	2.1	2.0	1.9		3.1	3.0	3.3	3.5	3.5	3.4	
BF Max Depth (ft)	5.0	5.3	6.1	6.3	6.0	6.3		3.2	3.0	3.2	3.1	3.0	3.0		2.9	2.8	2.6	2.7	2.7	2.5		5.3	5.2	4.1	4.8	4.8	5.2	
BF Cross Sectional Area (ft ²)	55.4	58.5	61.3	70.0	66.5	76.1		32.9	33.8	33.5	33.8	32.6	33.6		26.4	25.2	23.8	22.4	21.9	20.9		48.1	47.0	45.2	46.2	47.6	50.1	
Width/Depth Ratio	NA	NA	NA	NA	NA	NA		8.5	8.6	7.5	7.7	7.1	6.5		11.7	11.4	5.2	5.3	5.5	6.0		NA	NA	NA	NA	NA	NA	
Entrenchment Ratio	NA	NA	NA	NA	NA	NA		9.0	8.8	9.4	9.3	9.9	10.2		8.5	8.8	13.5	13.8	13.7	13.4		NA	NA	NA	NA	NA	NA	
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	
d50 (mm)	3.1	0.4	0.3	NA	0.3	0.6		15.6	11.7	0.4	1.8	0.7	0.4		13.6	8.7	4.4	0.2	0.3	0.6		6.3	0.1	0.2	NA	NA	NA	

Table 11b. Monitoring Data - Stream Reach Data Summary McIntyre Creek at Hornets Nest Park (EEP Project Number 243)

Difference and Subscisce Selfe. Mor.	Parameter	I unit (E	LI IIoje	Raseline	(1210)				MV-1					MV-2			1		MV-3					MV-4					MV-5			
Displan Displan No No No No No <				Daschine					1/11-1					111-2			1							1011-4					M11-5			
BY WALG [16] IF3	Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	
Docime Wild B1 19 190	BF Width (ft)	16.7			17.6		17.0			17		11.1			15.9		10.9			16.1		10.9			15.2		11.2			14.7		
BF Max Deptint 15 15 15 15 15 15 15 15 15	Floodprone Width (ft)	150			150		150			150		150			150		150			150		150			150		150			150		
mF AN Lege (n) 2.2 3.1 1.2 1.2 1.3 1.2 1.3 1.3 1.2 1.3	BF Mean Depth (ft)	1.5			2.0		1.5			2.0		2.1			2.1		2.1			2.1		2.0			2.1		1.9			2.3		
Image: Procession: Processind Processind Procession: Procession: Procession: Proce	BF Max Depth (ft)	2.9			3.2		2.8			3.0		2.6			3.2		2.7			3.1		2.7			3.0		2.5			3.0		
Walk blog here 10 110 88 1 114 52 1 71 53 1 71 1 71 1 71 1 71 1 71 1	BF Cross Sectional Area (ft ²)	26.4			32.9		25.2			33.8		23.8			33.5		22.4			33.8		21.9			32.6		20.9			33.6		
Processor S. S. V 8.8 V 8.8 V 1.15 V 1.18 V V 1.18 <td>Width/Depth Ratio</td> <td>8.5</td> <td></td> <td></td> <td>11.7</td> <td></td> <td>8.6</td> <td></td> <td></td> <td>11.4</td> <td></td> <td>5.2</td> <td></td> <td></td> <td>7.5</td> <td></td> <td>5.3</td> <td></td> <td></td> <td>7.7</td> <td></td> <td>5.5</td> <td></td> <td></td> <td>7.1</td> <td></td> <td>6.0</td> <td></td> <td></td> <td>6.5</td> <td></td>	Width/Depth Ratio	8.5			11.7		8.6			11.4		5.2			7.5		5.3			7.7		5.5			7.1		6.0			6.5		
Bit Magel Mod 10	Entrenchment Ratio	8.5			9.0		8.8			8.8		9.4			13.5		9.3			13.8		9.9			13.7		10.2			13.4		
Profix stands 101 21 <	Bank Height Ratio	1.0			1.0		1.0			1.0		1.0			1.0		1.0			1.0		1.0			1.0		1.0			1.0		
Adds Adds <	Profile - Reach 1		-		-				-			-	-	-		-	-	-	-	-		-	-	-		-	-	-			-	
Brite loge (19) 0.000 0.001 0.0004 0.0004 0.0004 0.0004 0.0006 0.000	Riffle length (ft)	10.1	32.1	32.8	91.7		10.9	25.9	24.5	50.5		7.4	27	21.1	76.8		15	41.2	33.8	99.3	25.7	12.1	33.8	34.4	75.9	15.1	14.6	36.3	32	91.8	20.4	
Pool lega(1) 4.3 173 15.5 394 6.4 170 15.5 20.0 6.7 4.6 170 16.5 20.0 6.7 4.6 170 16.5 20.0 6.7 4.6 170 16.5 20.0 6.7 4.6 170 16.0 14.8 170 16.0 14.8 170 16.0 14.8 170 16.0 14.8 170 16.0 14.8 170 16.0 14.8 170 16.0 14.8 170 16.0 14.8 170 16.0 14.8 170 16.0 14.8 170 16.0 14.8 170 16.0 14.8 170 16.0 14.8 170 16.0 170 16.0 14.8 170 16.0 170 16.0 170 16.0 170 16.0 170 16.0 170 16.0 170 16.0 170 16.0 170 16.0 170 16.0 170 16.0 170 16.0 170 16.0 170 16.0 170 16.0 170 16.0 170	Riffle slope (ft/ft)	0.0000	0.0012	0.0042	0.0313		0.0000	0.0047	0.0008	0.0296		0.0000	0.0023	0.0007	0.0126		0.0000	0.0034	0.0001	0.0221	0.01	0.0000	0.0040	0.0006	0.0201	0.0068	0.0000	0.0048	0.0008	0.0211	0.0076	
Pol Ma depite (0) 5.0 Fab 5.3 5.3 6.1 7 6.0 6.3 7.0 7.0 1.00 Poll space (0) 6.0 7.0 7.0 1.00 6.0 7.0 7.0 1.00 6.0 7.0 7.0 1.00 7.0 7.0 1.00 7.0 7.0 1.00 7.0 7.0 1.00 7.0 7.0 1.00 7.0 <td>Pool length (ft)</td> <td>4.3</td> <td>17.3</td> <td>15.6</td> <td>59.6</td> <td></td> <td>6.4</td> <td>19.6</td> <td>19.3</td> <td>35.8</td> <td></td> <td>10.4</td> <td>20.7</td> <td>20.3</td> <td>35.9</td> <td></td> <td>4.3</td> <td>17.9</td> <td>18.5</td> <td>29.0</td> <td>6.7</td> <td>4.6</td> <td>17.3</td> <td>16.0</td> <td>32.1</td> <td>7.1</td> <td>9.5</td> <td>24.6</td> <td>19.9</td> <td>95.2</td> <td>19.4</td>	Pool length (ft)	4.3	17.3	15.6	59.6		6.4	19.6	19.3	35.8		10.4	20.7	20.3	35.9		4.3	17.9	18.5	29.0	6.7	4.6	17.3	16.0	32.1	7.1	9.5	24.6	19.9	95.2	19.4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pool Max depth (ft)	5.0			5.3		5.2			5.3		4.1			6.1		4.8			6.3		4.8			6.0		5.2			6.3		
Profile-Road 2 Profi	Pool spacing (ft)	48.0	77.0	76.0	169.0		48.0	77.0	76.0	169.0		48.0	77.0	/6.0	169.0		48.0	77.0	/6.0	169.0		48.0	77.0	/6.0	169.0		48.0	77.0	/6.0	169.0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Profile - Reach 2				1	1										r			1	1		—			<u> </u>							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Riffle length (ft)	10.1	32.1	32.8	91.7		11.9	30.1	30.1	58.2		4.7	24.7	22.4	61.2		5.9	28	19.4	102.5	25.2	9.1	37.6	32.7	81.7	22.9	7.7	31.3	31.5	65.9	17.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Riffle slope (ft/ft)	0.0000	0.0012	0.0042	0.0313		0.0000	0.0100	0.0001	0.0061		0.0000	0.0014	0.0010	0.0046		0.0000	0.0012	0.0005	0.0050	0.00	0.0000	0.0014	0.0008	0.0076	0.0020	0.0000	0.0005	0.0000	0.0032	0.0009	
$ \begin{array}{ c c c c c c c c c c $	Pool length (ft)	4.5	17.5	15.6	59.0		4.0	14./	9.5	43.3		2.5	10.7	9.9	22.2		4.2	14.6	13.1	52.1	8./	3.0	1/.1	18.8	43.7	9.9	0.3 5.2	20.0	17.3	50.9	15.5	
Provise rate Provise rate <t< th=""><td>Pool Max depth (It)</td><td>3.0</td><td>77.0</td><td>76.0</td><td>3.5</td><td></td><td>3.2</td><td>77.0</td><td>76.0</td><td>3.3</td><td></td><td>4.1</td><td>77.0</td><td>76.0</td><td>0.1</td><td></td><td>4.1</td><td>77.0</td><td>76.0</td><td>0.1</td><td></td><td>4.8</td><td>77.0</td><td>76.0</td><td>0.0</td><td></td><td>3.2</td><td>77.0</td><td>76.0</td><td>0.3</td><td></td></t<>	Pool Max depth (It)	3.0	77.0	76.0	3.5		3.2	77.0	76.0	3.3		4.1	77.0	76.0	0.1		4.1	77.0	76.0	0.1		4.8	77.0	76.0	0.0		3.2	77.0	76.0	0.3		
Police Acad 3	Poor spacing (It)	46.0	77.0	70.0	109.0		46.0	//.0	70.0	109.0		46.0	//.0	/0.0	109.0		46.0	//.0	/0.0	109.0		46.0	77.0	70.0	109.0		46.0	77.0	/0.0	109.0		
Allfleshight (h) 10.1 32.1 32.8 9.7 9.7 3.4.6 34.7 7.5 2.8 2.7 61.1 5.5 27.3 2.8.6 4.4.1 1.7 6.6 30.2 29.4 61.4 14.2 8.6 36.8 39.7 63.3 61.1 Milles bage (h) 0.000 0.0001 0.001 0.001 0.001 0.007 0.0000 0.000 0.000 0.000 0.001 0.001 0.007 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.007 0.000 0.000 0.001 0.001 0.001 0.007 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.000 0.001	Profile - Reach 3		1	•	1				•												•											
Rrife solge (fty) 0.0012 0.	Riffle length (ft)	10.1	32.1	32.8	91.7		9.7	34.6	34.7	63.7		7.5	28	27	61.1		5.5	27.3	28.6	48.4	11.7	6.6	30.2	29.4	64.4	14.2	8.6	36.8	39.7	65.3	16.1	
Image: Problem in transmission 1/3 15.5 1/2 1/2 1/2 1/2 1/3	Riffle slope (ft/ft)	0.0000	0.0012	0.0042	0.0313		0.0010	0.0027	0.0011	0.0150		0.0000	0.0007	0.0003	0.0041		0.0000	0.0022	0.0008	0.0089	0.00	0.0000	0.0021	0.0012	0.0124	0.0029	0.0000	0.0022	0.0013	0.0078	0.0027	
Proof Nark depin (10) 3.0 Image: Normal and the sector of the sector o	Pool length (ft)	4.3	17.3	15.6	59.6		4.5	12.2	12.1	21.2		1.3	15.5	11.5	42.2		5.1	15.9	15.6	33.7	8.0	6.7	17.3	13.9	41.7	9.7	5.3	16.6	14.2	38.9	8.8	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pool Max depth (ft)	5.0	77.0	76.0	5.5		5.2	77.0	76.0	5.5		4.1	77.0	76.0	0.1		4.1	77.0	76.0	0.1		4.8	77.0	76.0	0.0		5.2	77.0	76.0	0.3		
Partern Channel Beltwidth (1) 19 45 41 107 Image: Channel Channel Beltwidth (1) 14 Image: Channel Chann	Pool spacing (II)	48.0	77.0	/0.0	109.0		48.0	//.0	/6.0	109.0		48.0	//.0	/0.0	109.0		48.0	//.0	/0.0	109.0		48.0	//.0	/0.0	109.0		48.0	77.0	/0.0	169.0		
Channel Breilwandi (1) 19 45 41 107 0 0 0 0 0 0 0 0 0 0 Residues of Curvature (1) 24 49 40 246 0	Pattern	10	45	4.1	107	1			-				<u> </u>			-	-		1	1	1			-			-				-	
Radius of Curvature (i) 24 49 40 240 60 6	Dadius of Computing (ft)	19	45	41	107																											
Actional Multi (1) 1.4 2.3 2.3 1.4 1.4 1.4 2.3 2.3 1.4 1.4 1.4 1.4 2.6 2.4 6.2 0<	Radius of Curvature (II) Re: Rankfull width (ft/ft)	24	49	40	240																											
Additional Reach Wriden with Tratio 1.1 2.6 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 6.2 2.4 1.4	Meander Wavelength (ft)	88	132	12.3	220																											
Additional Reach Parameters E-type I.t <	Meander Wavelength (It)	11	2.6	2.4	62																											
Additional Reach Parameters Rosgen Classification E-type E-type <th co<="" th=""><td></td><td></td><td>210</td><td>2</td><td>0.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td>210</td> <td>2</td> <td>0.2</td> <td></td>			210	2	0.2																										
Rogen Classification E-type E-type <t< th=""><td>Additional Reach Parameters</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>1</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>1</td><td></td><td>-</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></t<>	Additional Reach Parameters	1							-			1		-					-			1		-			1					
Channel Thalwag Length (1) 51/8	Rosgen Classification			E-type					E-type					E-type			I		E-type					E-type					E-type			
Sinusity I.4	Channel Thalweg Length (ft)			51/8					51/8					51/8					51/8					51/8					51/8			
water Surface Slope (Channel) (I/I/I) 0.0035 $0.0020 - 0.0042$ $0.0022 - 0.0041$ $0.0026 - 0.0043$ $0.0025 - 0.0045$ $0.0025 - 0.0045$ $0.0021 - 0.0045$ BF slope (fr/ft)	Sinuosity			1.4					1.4					1.4					1.4					1.4					1.4			
BF slope (ft/ft)	water Surface Slope (Channel) (ff/ff)			0.0035				0.0	0020 - 0.00)42			0.0	0002 - 0.00	041			0.	0026 - 0.0	043			0.0	0025 - 0.00)46			0.0	0021 - 0.00	45		
Ri%/RU%P%G%/S% 45 14 25 15 41 17 22 20 38 21 24 17 45 13 26 16 45 12 27 16 43 11 32 14 SC%/SA%/G%/C%/B%BE% Image: Second s	BF slope (ft/ft)		-		_										-					-	-							-			_	
SC%/SA%/G%/C%/B%BE% Image: Constraint of the state	Ri%/RU%P%G%/S%	45	14	25	15		41	17	22	20		38	21	24	17		45	13	26	16		45	12	27	16		43	11	32	14		
d16/d35/d50/d84/d95 NA 0.1 0.1 0.1 8 21 % of Reach with Eroding Banks Image: Stability of Habitat Matrice Image: Stability of H	SC%/SA%/G%/C%/B%BE%																															
% of Reach with Eroding Banks Chapped Stability or Habitat Matria	d16/d35/d50/d84/d95											NA	0.18	0.3	7	15	NA	NA	0.2	9	25	NA	NA	0.2 9	9	24	NA	NA	0.1	8	21	
Channal Stability or Habitat Matria	% of Reach with Eroding Banks																L															
	Channel Stability or Habitat Metric																															
Biological or Other	Biological or Other																															

APPENDIX E

HYDROLOGY DATA

 Table 12.
 Verification of Bankfull Events

2014 (Year 5) Groundwater Gauge Graphs

Figure 3. Annual Climatic Data vs. 30-year Historic Data

Table 13. Wetland Hydrology Criteria Attainment Summary

 Table 12. Verification of Bankfull Events

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
September 23, 2010	July 12, 2010	Total of 2.14 inches* of rain reported to fall over 2 days (July 11-12, 2010), in addition to large wrack/debris piles and evidence of overbank flows within the adjacent floodplain.	1-2
September 23, 2010	August 19, 2010	Total of 1.1 inches* of rain reported to fall over 2 days (August 18-19, 2010) after a total of 4.43 inches* of rain the preceding 4 weeks, in addition to laid back vegetation and evidence of recent standing water within the floodplain.	3
October 18, 2010	September 29, 2010	Overbank event likely occurred after a total of 4.04 inches* of rain reported to fall over 6 days (September 25-30, 2010).	
October 21, 2011	August 5, 2011	Overbank event likely occurred after a total of 2.50 inches* of rain reported to fall on August 5, 2011.	4
August 6, 2012	May 8, 2012	Overbank event likely occurred after a total of 2.77 inches* of rain reported to fall on May 8-9, 2012.	
August 6, 2012	May 16, 2012	Overbank event likely occurred after a total of 2.71 inches* of rain reported to fall on May 13-16, 2012.	
February 21, 2013	January 17, 2013	Debris, wrack, and laid back vegetation observed on the floodplain after a total of 2.38 inches* of rain reported to fall on January 17, 2013.	5-6
November 18, 2013	April 28, 2013	Overbank event likely occurred after a total of 2.73 inches* of rain reported to fall on April 27-29, 2013.	
November 18, 2013	May 6, 2013	Overbank event likely occurred after a total of 2.13 inches* of rain reported to fall on May 5-6, 2013.	
November 18, 2013	June 3, 2013	Overbank event likely occurred after a total of 2.52 inches* of rain reported to fall on June 2-3, 2013 with an additional 3.10 on June 4-13, 2013.	
November 18, 2013	July 4, 2013	Overbank event likely occurred after a total of 4.23 inches* of rain reported to fall on July 4-11, 2013 with numerous small rain events (0.1-0.9 inches) in the proceeding and following days.	
May 7, 2014	April 19, 2014	Wrack and laid back vegetation observed on the floodplain after a total of 2.80 inches* of rain reported to fall on April 18-19. 2014.	
November 10, 2014	May 15, 2014	Overbank event likely occurred after a total of 2.11 inches* of rain reported to fall on May 15, 2014	
November 3, 2014	August 1, 2014	Wrack and laid back vegetation observed on the floodplain after a total of 3.84 inches* of rain reported to fall July 31- August 1, 2014	

McInytre Creek Restoration Site (EEP Project Number 243)

* Reported at KCLT Weather Station at the Charlotte Airport (Weatherunderground 2014).

McIntyre Creek Gauge 1 Year 5 (2014 Data)

Date

McIntyre Creek Gauge 2 Year 5 (2014 Data)

McIntyre Creek Gauge 3 Year 5 (2014 Data)

Month	30th %*	70th %*	2010**	2011**	2012**	2013**	2014**
Jan	2.79	4.76	4.88	1.36	2.29	4.28	2.9
Feb	2.27	4.28	3.79	3.44	1.30	3.46	4.01
Mar	2.84	5.28	4.37	4.52	3.89	3.44	4.48
Apr	1.85	3.57	1.44	3.32	1.67	4.56	7.39
May	2.34	4.41	3.37	4.73	5.92	3.00	4.05
June	2.02	4.16	2.89	3.10	1.02	7.31	2.85
July	2.38	4.58	2.48	3.53	3.98	7.46	4.38
Aug	2.29	4.51	4.75	5.18	3.11	1.80	3.74
Sept	2	4.68	4.18	5.55	4.82	3.06	3.99
Oct	1.77	4.52	1.13	3.04	1.21	0.48	1.35
Nov	2.3	4.01	1.38	3.34	0.65	3.63	
Dec	2.09	3.81	1.74	3.41	3.84	7.14	

*Charlotte Douglas International Airport 30-year historic data (NOAA 2004)

**Charlotte Douglas International Airport rainfall data (Weatherunderground 2014)

Gauge	Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)				
	Year 1 (2010)*	Year 2 (2011)*	Year 3 (2012)	Year 4 (2013)	Year 5 (2014)
1		No/7 day (3.0 %)	No/8 day (3.4 %)	Yes/23 day (10.0 %)	No/16 days (6.8%)
2		Yes/38 day (16.3 %)	Yes/23 day (10 %)	Yes/34 day (15.2 %)	Yes/72 Days (30.6%)
3		Yes/41 day (17.6 %)	No/22 day (9.4 %)	Yes/36 day (16.1 %)	Yes/63 Days (26.8%)

Table 13. Wetland Hydrology Criteria Attainment Summary McInytre Creek Restoration Site (EEP Project Number 243)

* Note that gauges were installed in 2011 and no data is available for baseline, or year 1 (2012) monitoring periods.

APPENDIX F

ADDITIONAL SITE DATA Restoration Plan Figure 3. Watershed Soils Restoration Plan Figure 5. Watershed 1999 Aerial Preconstruction Photographs

McIntyre Creek Preconstruction Photographs

McIntyre Creek (final) at Hornets Nest Park EEP Project Number 243 Mecklenburg County, North Carolina

Axiom Environmental, Inc.

Monitoring Year 5 of 5 (2014) December 2014 Appendices

APPENDIX G WATHERSHED PLANNING SUMMARY

APPENDIX H LAND OWNERSHIP AND PROTECTION

APPENDIX I JURISDICTIONAL DETERMINATION 404/401 PERMITS AND RELATED COORESPONDENCE

APPENDIX J PROJECT DEBIT LEDGER